LINEAR PREDICTION

- The orthogonality principle and optimal filtering
- The orthogonality principle for linear prediction
- The autoregressive (AR) model
- Backward prediction and the anticausal AR model
- The Levinson Recursion
- Lattice representation of filters

LINEAR PREDICTION (cont'd.)

- Partial correlation in the context of linear prediction
- Minimum-phase property of the prediction error filter
- The Schur algorithm
- "Split" algorithms
- Relations to triangular decomposition
- Lattice form for Wiener filter

LINEAR MEAN-SQUARE ESTIMATION

FORM OF ESTIMATE

$$\hat{y} = \mathbf{a}^{*T} x = a_1^* x_1 + a_2^* x_2 + \dots + a_N^* x_N$$

ORTHOGONALITY PRINCIPLE

Theorem: Let $\varepsilon = y - \hat{y}$ be the error in estimation. Then a minimizes the mean-square error $\sigma_{\varepsilon}^2 = \mathcal{E}\left\{|y - \hat{y}|^2\right\}$ if a is chosen such that $\mathcal{E}\left\{x_i\varepsilon^*\right\} = \mathcal{E}\left\{\varepsilon x_i^*\right\} = 0$ $i = 1, 2, \ldots, N$, that is, if the error is orthogonal to the observations. Further the minimum mean-square error is given by $\sigma_{\varepsilon}^2 = \mathcal{E}\left\{y\varepsilon^*\right\} = \mathcal{E}\left\{\varepsilon y^*\right\}$.

VECTOR SPACE INTERPRETATION OF THE ORTHOGONALITY PRINCIPLE

- Elements are random variables.
- Inner product is expectation.

THE LINEAR PREDICTION PROBLEM

Estimate the present value of a signal x[n] from past values $x[n-1], x[n-2], \ldots, x[n-P].$

$$\sigma_{\varepsilon}^{2} = \mathcal{E}\left\{ |\varepsilon[n]|^{2} \right\}$$

$$\varepsilon[n] = x[n] - \hat{x}[n]$$

$$\hat{x}[n] = -a_1^* x[n-1] - a_2^* x[n-2] - \dots - a_P^* x[n-P]$$

PREDICTION ERROR FILTER

$$\varepsilon[n]=x[n]-\hat{x}[n]=\sum_{k=0}^P a_k^*x[n-k]$$
 ; with $a_0\equiv 1$

ORTHOGONALITY PRINCIPLE FOR LINEAR PREDICTION

Theorem: Let $\varepsilon[n] = x[n] - \widehat{x}[n]$ be the error in estimation. Then the prediction error filter with coefficients $1, a_1^*, a_2^*, \ldots, a_P^*$ minimizes the prediction error variance σ_ε^2 if the filter coefficients are chosen such that $\mathcal{E}\{x[n-i]\varepsilon^*[n]\} = 0$ $i = 1, 2, \ldots, P$, that is, if the error is orthogonal to the observations. Further the (minimum) prediction error variance is given by $\sigma_\varepsilon^2 = \mathcal{E}\{x[n]\varepsilon^*[n]\}$.

VECTOR SPACE INTERPRETATION OF LINEAR PREDICTION

First order

Second order

WHITENING BY LINEAR PREDICTION

- Error sequence orthogonal, $\mathcal{E}\left\{\varepsilon[i]\varepsilon^*[j]\right\} = 0.$
- Prediction error filter whitens the process.

